5 (a) (i) Complete the Boolean function that corresponds to the following truth ta

	INPUT		
Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$X = \overline{A} \cdot B \cdot C + \dots$$
 [3]

The part to the right of the equals sign is known as the sum-of-products.

(ii) For the truth table above complete the Karnaugh Map (K-map).

			Α	В	
		00	01	11	10
С	0				
C	1				

[1]

The K-map can be used to simplify the function in part(a)(i).

- (iii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]
- (iv) Using your answer to part (a)(iii), write the simplified sum-of-products Boolean function.

(b) The truth table for a logic circuit with four inputs is given below:

ſ	۲		h
	上	=	4

	INPUT			OUTPUT
Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

(i) Complete the K-map corresponding to the truth table above.

[4]

(ii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]

(iii) Using your answer to part (b)(ii), write the simplified sum-of-products Boolean function.

X =[2]

5 (a) (i) Complete the Boolean function that corresponds to the following truth ta

	INPUT		
Р	Q	R	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$Z = P \cdot \overline{Q} \cdot \overline{R} + \dots$$
 [3]

The part to the right of the equals sign is known as the sum-of-products.

(ii) For the truth table above complete the Karnaugh Map (K-map).

			Р	Q	
		00	01	11	10
_	0				
R	1				

[1]

The K-map can be used to simplify the function in part(a)(i).

- (iii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]
- (iv) Using your answer to part (a)(iii), write the simplified sum-of-products Boolean function.

(b) The truth table for a logic circuit with four inputs is given below:

ſ	۲	h
L	Ļ	Ц

	INPUT			OUTPUT
Р	Q	R	S	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

(i) Complete the K-map corresponding to the truth table above.

[4]

(ii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]

(iii) Using your answer to part (b)(ii), write the simplified sum-of-products Boolean function.

Z =[2]

QUESTION 7.

3 Consider the following logic circuit, which contains a redundant logic gate.

(a) Write the Boolean algebraic expression corresponding to this logic circuit.

		<u>.</u>		
Y	_	14	วา	
/\	_		O.	

(b) Complete the truth table for this logic circuit.

Α	В	С	Working space	Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(c) (i) Complete the Karnaugh Map (K-map) for the truth table in part (b).

C 1 AB

The K-map can be used to simplify the expression in part (a).

(ii) Draw loop(s) around appropriate groups to produce an optimal sum-of-products. [2]

(iii) Write a simplified sum-of-products expression, using your answer to part (ii).

V	[0]
x —	コンロ
// =	

[2]

[1]

(d) One Boolean identity is:

$A + \overline{A}.B = A + B$

Simplify the expression for X in part (a) to the expression for X in part (c)(iii) . You should the given identity.
[2

QUESTION 8.

3 A logic circuit is shown:

(a) Write the Boolean algebraic expression corresponding to this logic circuit:

C	_	Г	и.
\circ	_		+

(b) Complete the truth table for this logic circular	(b)) Complete t	he truth	table for	this	loaic	circuit
--	-----	--------------	----------	-----------	------	-------	---------

Р	Q	R	Working space	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		

Ш
Ц

[2]

(c) (i) Complete the Karnaugh Map (K-map) for the truth table in part (b).

1

PQ

		00	01	11	10
R	0				
n	1				

[1]

The K-map can be used to simplify the function in part (a).

- (ii) Draw loop(s) around appropriate groups to produce an optimal sum-of-products. [1]
- (iii) Write a simplified sum-of-products expression, using your answer to part (ii).

0		·	F4	1
u	_			

(d) One Boolean identity is:

1

1

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

Simplify the expression for S in part (a) to the expression for S in part (c)(iii).

You should use the given identity and De Morgan's Laws.

QUESTION 9.

J

4 (a) A Boolean expression corresponds to the following truth table.

	h

	INPUT			
Α	В	С	X	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

/i\	Write the Roolean	expression for the truth	table by	annlying the	eum-of-producte
(1)	write the boolean	expression for the truth	lable by	appiving the	Sum-or-products

X =[2]

(ii) Complete the Karnaugh Map (K-map) for the truth table.

AB

		00	01	11	10
•	0				
С	1				

[1]

(iii) The K-map can be used to simplify the expression in part (a)(i).

Draw loop(s) around appropriate groups of 1s in the table in **part (a)(ii)** to produce an optimal sum-of-products. [3]

(iv) Write the simplified sum-of-products expression for your answer to part (a)(iii).

X =[3]

(b) A logic circuit with four inputs produces the following truth table.

Г	۲	h
		ı
Ŀ	L	Ц

	INPUT				
Α	В	С	D	Х	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	1	
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

(i) Complete the K-map that corresponds to the truth table.

AB

[4]

(ii) Draw loop(s) around appropriate groups of 1s in the table in **part** (b)(i) to produce an optimal sum-of-products. [2]

(iii) Write the simplified sum-of-products expression for your answer to part (b)(ii).

X =[2]

QUESTION 10.

3 (a) Consider the following Boolean expression.

_	_	_	-		
A . B	C + A	. B . C	+ A	В	\mathcal{C}

Use Boolean algebra to simplify the expression.	
	[4]

(b) (i) Complete the truth table for the following logic circuit.

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(ii) Complete the Karnaugh Map (K-map) for the truth table in part (b)(i).

A	п	
/\		-

		00	01	11	10
•	0				
С	1				

[1]

[2]

- (iii) Draw loops around appropriate groups of 1s in the table in part (b)(ii) to produce an optimal sum-of-products.
- (iv) Using your answer to part (b)(iii), write a simplified sum-of-products Boolean expression.

(c) The truth table for a logic circuit with four inputs is shown.

Г	_	7	ī
			ı
느		4	J

	INPUT				
Α	В	С	D	х	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	1	
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

(i) Complete the K-map for the truth table in part (c).

AB

[4]

(ii) Draw loops around appropriate groups of 1s in the table in **part (c)(i)** to produce an optimal sum-of-products. [2]

(iii) Using your answer to part (c)(ii), write a simplified sum-of-products Boolean expression.

X =[2]

QUESTION 11.

3 (a) A Boolean algebraic expression produces the following truth table.

	INPUT			
Α	В	С	X	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	

(i) Complete the Karnaugh Map (K-map) for the truth table.

Δ	н

		00	01	11	10
^	0				
С	1				

[1]

The K-map can be used to simplify the expression that produced the truth table in part (a).

- (ii) Draw loops around appropriate groups of 1s in the K-map to produce an optimal sum-of-products. [2]
- (iii) Write the simplified sum-of-products Boolean expression for the truth table.

V	_	· · · · · · · · · · · · · · · · · · ·	[0]	1
Λ	_		14	

(b) A logic circuit with four inputs produces the following truth table.

	П

	INPUT												
Α	В	С	D	Х									
0	0	0	0	0									
0	0	0	1	0									
0	0	1	0	1									
0	0	1	1	1									
0	1	0	0	0									
0	1	0	1	0									
0	1	1	0	1									
0	1	1	1	1									
1	0	0	0	1									
1	0	0	1	1									
1	0	1	0	0									
1	0	1	1	0									
1	1	0	0	1									
1	1	0	1	1									
1	1	1	0	0									
1	1	1	1	0									

(i) Complete the K-map for the truth table.

AB

[4]

(ii) Draw loops around appropriate groups of 1s in the K-map to produce an optimal sum-of-products. [2]

(iii) Write the simplified sum-of-products Boolean algebraic expression for the truth table.

QUESTION 12.

4 A Boolean expression produces the following truth table.

	ŀ	

	INPUT											
Α	В	С	X									
0	0	0	1									
0	0	1	1									
0	1	0	0									
0	1	1	1									
1	0	0	0									
1	0	1	1									
1	1	0	0									
1	1	1	1									

(a)	Write the Bo	olean expression	n for the truth	n table as a	sum-of-products.
-----	--------------	------------------	-----------------	--------------	------------------

(b) Complete the Karnaugh Map (K-map) for the truth table above.

AB

		00	01	11	10
С	0				
C	1				

[1]

The K-map can be used to simplify the expression in part (a).

- (c) Draw loops around appropriate groups in the K-map in **part** (b) to produce an optimal sum-of-products. [2]
- (d) Write, using your answer to **part** (c), a simplified sum-of-products expression for the truth table.

v	,	Γ	٧.
A	=	1/	
-	. —	 1-	-

QUESTION 13.

2 (a) A Boolean expression produces the following truth table

oduce	es the follow	ving truth tal	ole.	
	INPUT			
4	В	С	Х	
	_	_		

	INPUT		OUTPUT
Α	В	С	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

(i)	Write the Boolean	expression for	or the truth	table by	applying the	sum-of-products.
-----	-------------------	----------------	--------------	----------	--------------	------------------

X	=	 																	
		 	[3]																

(ii) Complete the Karnaugh Map (K-map) for the truth table in part (a).

AB

	00	01	11	10
0				
1				

[1]

The K-map can be used to simplify the function in part (a)(i).

C

- (iii) Draw loop(s) around appropriate groups in the table in **part (a)(ii)**, to produce an optimal sum-of-products. [2]
- (iv) Write, using your answer to **part** (a)(iii), a simplified Boolean expression for your Karnaugh map.

		-	٠.
·¥	_	11	,
_	_	1/	-

(b)	Simplify the following expression using De Morgan's laws. Show your workin
	$(\overline{\overline{W}} + X) \cdot (Y + \overline{\overline{Z}})$

.....[3]